Highly transparent and flexible nanopaper transistors.
نویسندگان
چکیده
Renewable and clean "green" electronics based on paper substrates is an emerging field with intensifying research and commercial interests, as the technology combines the unique properties of flexibility, cost efficiency, recyclability, and renewability with the lightweight nature of paper. Because of its excellent optical transmittance and low surface roughness, nanopaper can host many types of electronics that are not possible on regular paper. However, there can be tremendous challenges with integrating devices on nanopaper due to its shape stability during processing. Here we demonstrate for the first time that flexible organic field-effect transistors (OFETs) with high transparency can be fabricated on tailored nanopapers. Useful electrical characteristics and an excellent mechanical flexibility were observed. It is believed that the large binding energy between polymer dielectric and cellulose nanopaper, and the effective stress release from the fibrous substrate promote these beneficial properties. Only a 10% decrease in mobility was observed when the nanopaper transistors were bent and folded. The nanopaper transistor also showed excellent optical transmittance up to 83.5%. The device configuration can transform many semiconductor materials for use in flexible green electronics.
منابع مشابه
Development and applications of transparent conductive nanocellulose paper
Increasing attention has been paid to the next generation of 'green' electronic devices based on renewable nanocellulose, owing to its low roughness, good thermal stability and excellent optical properties. Various proof-of-concept transparent nanopaper-based electronic devices have been fabricated; these devices exhibit excellent flexibility, bendability and even foldability. In this review, w...
متن کاملClearly Transparent Nanopaper from Highly Concentrated Cellulose Nanofiber Dispersion Using Dilution and Sonication
Nanopaper prepared from holocellulose pulp is one of the best substrates for flexible electronics because of its high thermal resistance and high clear transparency. However, the clearness of nanopaper decreases with increasing concentration of the starting cellulose nanofiber dispersion-with the use of a 2.2 wt % dispersion, for example-resulting in translucent nanopaper with a high haze of 44...
متن کاملHighly transparent and writable wood all - cellulose hybrid nanostructured paper †
Paper, as an inexpensive substrate for flexible electronics and energy devices, has garnered great attention because of its abundance, biodegradability, renewability and sustainability. However, the intrinsic opacity and higher roughness of regular paper greatly restricts further applications. One promising method is to use cellulose nanofibers (CNs) to fabricate nanopaper with a high optical t...
متن کاملSolution-processed assembly of ultrathin transparent conductive cellulose nanopaper embedding AgNWs.
Natural biomass based cellulose nanopaper is becoming a promising transparent substrate to supersede traditional petroleum based polymer films in realizing future flexible paper-electronics. Here, ultrathin, highly transparent, outstanding conductive hybrid nanopaper with excellent mechanical flexibility was synthesized by the assembly of nanofibrillated cellulose (NFC) and silver nanowires (Ag...
متن کاملHazy Transparent Cellulose Nanopaper
The aim of this study is to clarify light scattering mechanism of hazy transparent cellulose nanopaper. Clear optical transparent nanopaper consists of 3-15 nm wide cellulose nanofibers, which are obtained by the full nanofibrillation of pulp fibers. At the clear transparent nanopaper with 40 μm thickness, their total transmittance are 89.3-91.5% and haze values are 4.9-11.7%. When the pulp fib...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 7 3 شماره
صفحات -
تاریخ انتشار 2013